Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Michael Bolte ${ }^{\mathrm{a} *}$ and

 Peyman Sakhaii ${ }^{\text {b }}$${ }^{\text {a }}$ Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Marie-CurieStraße 11, 60439 Frankfurt/Main, Germany, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, J. W. Goethe-Universität Frankfurt, Marie-CurieStraße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Some non- H atoms missing
Disorder in solvent or counterion
R factor $=0.057$
$w R$ factor $=0.153$
Data-to-parameter ratio $=14.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

26,28-Bis(benzyloxy)-25,27-dihydroxy-5,17-dinitrocalix[4]arene methanol solvate

In the title compound, $\mathrm{C}_{42} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{8} \cdot \mathrm{CH}_{4} \mathrm{O}$, the calix[4]arene assumes a cone conformation. The hydroxyl groups form intramolecular hydrogen bonds to the ether O atoms.

Received 19 August 2004
Accepted 24 August 2004 Online 28 August 2004

Comment

Calixarenes are enjoying considerable interest in the field of supramolecular chemistry because their derivatives can form inclusion complexes with cations or with neutral molecules (Gutsche, 1989; Vicens \& Böhmer, 1991).

$\mathrm{CH}_{3} \mathrm{OH}$
(I)

The molecular structure of the title compound, (I), is shown in Fig. 1. The calix[4]arene assumes a conformation with approximate C_{2} symmetry, in which the C atoms of the methylene bridges are nearly coplanar (the average deviation from the mean plane is $0.147 \AA$). All four residues (the two hydroxyl groups and the two benzyloxy groups) are on the same side of this plane. The aromatic rings of the calix[4]arene form a cone. The interplanar angles of the single aromatic rings with the above-defined mean plane are 69.35 (7), 46.93 (7), 72.95 (6) and 38.16 (6) ${ }^{\circ}$ for the rings C11-C16, C21C26, C31-C36 and C41-C46, respectively. The torsion angles around the $\mathrm{Ar}-\mathrm{CH}_{2}$ bonds, which may be used to provide an unambiguous description of the molecular conformation (Ugozzoli \& Andreetti, 1992), are given in Table 1. The molecular conformation is stabilized by two intramolecular hydrogen bonds from the hydroxyl groups to the ether O atoms (see Table 2 for details).

Experimental

The title compound was synthesized according to the procedure described by Casnati et al. (1991). Yellow crystals were grown from a methanol/dicloromethane solution of the material.

Crystal data

$\mathrm{C}_{42} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{9} \cdot \mathrm{CH}_{4} \mathrm{O}$
$M_{r}=726.75$
Monoclinic, $P 2_{1} / n$
$a=10.2000$ (8) A
$b=15.254$ (1) \AA
$c=22.986$ (2) \AA
$\beta=90.508(6)^{\circ}$
$V=3576.3(5) \AA^{3}$
$Z=4$
$D_{x}=1.350 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 510
\quad reflections
$\theta=1-20^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=173(2) \mathrm{K}$
Plate, yellow
$0.35 \times 0.32 \times 0.11 \mathrm{~mm}$

Data collection

Siemens SMART CCD three-circle diffractometer
ω scans
Absorption correction: none
67307 measured reflections
6793 independent reflections
4635 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.065$
$\theta_{\text {max }}=25.7^{\circ}$
$h=-12 \rightarrow 12$
$k=-18 \rightarrow 18$
$l=-28 \rightarrow 28$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.153$
$S=1.06$
6793 reflections
472 parameters
H-atom parameters constrained

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0722 P)^{2}\right. \\
\quad \\
\quad+1.9514 P] \\
\quad \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.45 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.47 \mathrm{e} \AA^{-3} \\
\text { Extinction correction: } S H E L X L 97 \\
\text { Extinction coefficient: } 0.0021(5)
\end{array}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

C12-O51	$1.396(3)$	C42-O42	$1.349(3)$
C22-O22	$1.344(3)$	O51-C51	$1.450(3)$
C32-O61	$1.399(3)$	O61-C61	$1.449(3)$
C12-O51-C51	$112.71(19)$	C32-O61-C61	$112.52(17)$
C43-C1-C11-C12	$97.3(3)$	C23-C3-C31-C32	$100.1(3)$
C21-C2-C13-C12	$-105.2(3)$	C41-C4-C33-C32	$-108.4(3)$
C13-C2-C21-C22	$81.8(3)$	C33-C4-C41-C42	$76.5(3)$
C31-C3-C23-C22	$-78.9(3)$	C11-C1-C43-C42	$-70.5(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O22-H22 \cdots O61	0.84	1.99	$2.806(2)$	164
O42-H42 O51	0.84	1.92	$2.703(2)$	155

All H atoms were refined with fixed individual displacement parameters $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})\right.$ or $\left.1.2 U_{\mathrm{eq}}(\mathrm{O})\right]$ using a riding model, with $\mathrm{O}-\mathrm{H}=0.84 \AA$ and $\mathrm{C}-\mathrm{H}=0.95$ and $0.99 \AA$ for aromatic and methylene C atoms, respectively. There is approximately one molecule of disordered methanol per asymmetric unit which has been suppressed using the SQUEEZE option (van der Sluis \& Spek, 1990) in PLATON (Spek, 2003).

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve

Figure 1
Perspective view of the title compound with the atom numbering; displacement ellipsoids are at the 50% probability level and C -bound H atoms have been omitted for clarity. The MeOH nolecule is not shown. Hydrogen bonds are shown as dashed lines.
structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97.

References

Casnati, A., Arduini, A., Ghidini, E., Pochini, A. \& Ungaro. R. (1991). Tetrahedron, 47, 2221-2228.
Gutsche, C. D. (1989). In Calixarenes, Monographs in Supramolecular Chemistry, Vol. 1, edited by J. F. Stoddart. London: The Royal Society of Chemistry.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sluis, P. van der \& Spek, A. L. (1990). Acta Cryst. A46, 194-201.
Spek, A. L. (2003). J. Appl Cryst. 36, 7-13.
Ugozzoli, F. \& Andreetti, G. D. (1992). J. Incl. Phenom. Mol. Recognit. Chem. 13, 337-348.
Vicens, J. \& Böhmer, V. (1991). In Calixarenes: A Versatile Class of Macrocyclic Compounds. Dordrecht: Kluwer Academic Publishers.

